martes, 8 de septiembre de 2015

Todo número impar mayor que 5 es la suma de tres primos.

La conjetura de Goldbach es otro de los problemas sobre números primos que, pese su enunciado elemental, se ha resistido a generaciones enteras de matemáticos, ¡incluso al tío Petros! Formulado por el alemán Christian Goldbach en una carta a Euler en 1742, el problema consiste en demostrar que todo número par mayor que 2 se puede obtener como suma de dos números primos, como es el caso de 4=2+2, 6=3+3, 8=3+5 o 10=3+7. Si la conjetura es cierta, entonces todo número impar mayor que 5 es suma de tres números primos, un enunciado que se conoce con el nombre de conjetura ternaria de Goldbach. En el año 2013, este último fue demostrado por el matemático de origen peruano Harald Helfgott, investigador del CNRS. 

Desde los trabajos de Vinogradov en 1937 se sabía que la conjetura ternaria era cierta para números mayores que una cierta constante, pero esa constante era tan gigantesca que imposibilita cualquier verificación por ordenador de los casos restantes. Un nuevo enfoque permitió a Helfgott reducir la cota, convirtiendo la comprobación final de la conjetura en “una tarea computacional menor”.


No hay comentarios:

Publicar un comentario